Apache Beam 操作符

Apache Beam 是一个开源的统一模型,用于定义批处理和流式数据并行处理管道。使用开源 Beam SDK 之一,你可以构建一个定义管道的程序。然后,该管道由 Beam 支持的分布式处理后端之一执行,包括 Apache Flink、Apache Spark 和 Google Cloud Dataflow。

注意

当 Apache Beam 管道在 Dataflow 服务上运行时,此操作符需要在 Airflow worker 上安装 gcloud 命令 (Google Cloud SDK) <https://cloud.google.com/sdk/docs/install>。

在 Apache Beam 中运行 Python 管道

必须为 BeamRunPythonPipelineOperator 指定 py_file 参数,因为它包含要由 Beam 执行的管道。Python 文件可以位于 GCS 上,Airflow 有能力下载,也可以位于本地文件系统上(提供其绝对路径)。

py_interpreter 参数指定执行管道时要使用的 Python 版本,默认值为 python3。如果您的 Airflow 实例在 Python 2 上运行 - 请指定 python2 并确保您的 py_file 是用 Python 2 编写的。为了获得最佳结果,请使用 Python 3。

如果指定了 py_requirements 参数,将创建一个具有指定要求的临时 Python 虚拟环境,并且管道将在其中运行。

py_system_site_packages 参数指定是否可以从您的 Airflow 实例访问所有 Python 包(如果指定了 py_requirements 参数),建议避免,除非 Dataflow 作业需要它。

使用 DirectRunner 的 Python 管道

tests/system/apache/beam/example_python.py[源代码]

start_python_pipeline_local_direct_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_local_direct_runner",
    py_file="apache_beam.examples.wordcount",
    py_options=["-m"],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
)

tests/system/apache/beam/example_python.py[源代码]

start_python_pipeline_direct_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_direct_runner",
    py_file=GCS_PYTHON,
    py_options=[],
    pipeline_options={"output": GCS_OUTPUT},
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
)

你可以使用可延迟模式来异步运行此操作。它将使你能够在知道必须等待时释放工作器,并将恢复操作符的工作交给触发器。因此,当它暂停(延迟)时,它不会占用工作器插槽,并且你的集群将减少大量浪费在空闲操作符或传感器上的资源。

tests/system/apache/beam/example_python_async.py[源代码]

start_python_pipeline_local_direct_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_local_direct_runner",
    py_file="apache_beam.examples.wordcount",
    py_options=["-m"],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    deferrable=True,
)

tests/system/apache/beam/example_python_async.py[源代码]

start_python_pipeline_direct_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_direct_runner",
    py_file=GCS_PYTHON,
    py_options=[],
    pipeline_options={"output": GCS_OUTPUT},
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    deferrable=True,
)

使用 DataflowRunner 的 Python 管道

tests/system/apache/beam/example_python.py[源代码]

start_python_pipeline_dataflow_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_dataflow_runner",
    runner="DataflowRunner",
    py_file=GCS_PYTHON,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
    },
    py_options=[],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}", project_id=GCP_PROJECT_ID, location="us-central1"
    ),
)

tests/system/apache/beam/example_python_dataflow.py[源代码]

start_python_job_dataflow_runner_async = BeamRunPythonPipelineOperator(
    task_id="start_python_job_dataflow_runner_async",
    runner="DataflowRunner",
    py_file=GCS_PYTHON_DATAFLOW_ASYNC,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
    },
    py_options=[],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}",
        project_id=GCP_PROJECT_ID,
        location="us-central1",
        wait_until_finished=False,
    ),
)

wait_for_python_job_dataflow_runner_async_done = DataflowJobStatusSensor(
    task_id="wait-for-python-job-async-done",
    job_id="{{task_instance.xcom_pull('start_python_job_dataflow_runner_async')['dataflow_job_id']}}",
    expected_statuses={DataflowJobStatus.JOB_STATE_DONE},
    project_id=GCP_PROJECT_ID,
    location="us-central1",
)

start_python_job_dataflow_runner_async >> wait_for_python_job_dataflow_runner_async_done

你可以使用可延迟模式来异步运行此操作。它将使你能够在知道必须等待时释放工作器,并将恢复操作符的工作交给触发器。因此,当它暂停(延迟)时,它不会占用工作器插槽,并且你的集群将减少大量浪费在空闲操作符或传感器上的资源。

tests/system/apache/beam/example_python_async.py[源代码]

start_python_pipeline_dataflow_runner = BeamRunPythonPipelineOperator(
    task_id="start_python_pipeline_dataflow_runner",
    runner="DataflowRunner",
    py_file=GCS_PYTHON,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
    },
    py_options=[],
    py_requirements=["apache-beam[gcp]==2.59.0"],
    py_interpreter="python3",
    py_system_site_packages=False,
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}", project_id=GCP_PROJECT_ID, location="us-central1"
    ),
    deferrable=True,
)


在 Apache Beam 中运行 Java 管道

对于 Java 管道,必须为 BeamRunJavaPipelineOperator 指定 jar 参数,因为它包含要由 Apache Beam 执行的管道。JAR 可以位于 GCS 上,Airflow 有能力下载,也可以位于本地文件系统上(提供其绝对路径)。

使用 DirectRunner 的 Java 管道

tests/system/apache/beam/example_beam.py[源代码]

jar_to_local_direct_runner = GCSToLocalFilesystemOperator(
    task_id="jar_to_local_direct_runner",
    bucket=GCS_JAR_DIRECT_RUNNER_BUCKET_NAME,
    object_name=GCS_JAR_DIRECT_RUNNER_OBJECT_NAME,
    filename="/tmp/beam_wordcount_direct_runner_{{ ds_nodash }}.jar",
)

start_java_pipeline_direct_runner = BeamRunJavaPipelineOperator(
    task_id="start_java_pipeline_direct_runner",
    jar="/tmp/beam_wordcount_direct_runner_{{ ds_nodash }}.jar",
    pipeline_options={
        "output": "/tmp/start_java_pipeline_direct_runner",
        "inputFile": GCS_INPUT,
    },
    job_class="org.apache.beam.examples.WordCount",
)

jar_to_local_direct_runner >> start_java_pipeline_direct_runner

使用 DataflowRunner 的 Java 管道

tests/system/apache/beam/example_java_dataflow.py[源代码]

jar_to_local_dataflow_runner = GCSToLocalFilesystemOperator(
    task_id="jar_to_local_dataflow_runner",
    bucket=GCS_JAR_DATAFLOW_RUNNER_BUCKET_NAME,
    object_name=GCS_JAR_DATAFLOW_RUNNER_OBJECT_NAME,
    filename="/tmp/beam_wordcount_dataflow_runner_{{ ds_nodash }}.jar",
)

start_java_pipeline_dataflow = BeamRunJavaPipelineOperator(
    task_id="start_java_pipeline_dataflow",
    runner="DataflowRunner",
    jar="/tmp/beam_wordcount_dataflow_runner_{{ ds_nodash }}.jar",
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
    },
    job_class="org.apache.beam.examples.WordCount",
    dataflow_config={"job_name": "{{task.task_id}}", "location": "us-central1"},
)

jar_to_local_dataflow_runner >> start_java_pipeline_dataflow


在 Apache Beam 中运行 Go 管道

必须为 BeamRunGoPipelineOperator 指定 go_file 参数,因为它包含要由 Beam 执行的管道。Go 文件可以位于 GCS 上,Airflow 有能力下载,也可以位于本地文件系统上(提供其绝对路径)。从本地文件系统运行时,等效命令将是 go run <go_file>。如果从 GCS 存储桶中拉取,则会事先使用 go run init example.com/maingo mod tidy 初始化模块并安装依赖项。

使用 DirectRunner 的 Go 管道

tests/system/apache/beam/example_go.py[源代码]

start_go_pipeline_local_direct_runner = BeamRunGoPipelineOperator(
    task_id="start_go_pipeline_local_direct_runner",
    go_file="files/apache_beam/examples/wordcount.go",
)

tests/system/apache/beam/example_go.py[源代码]

start_go_pipeline_direct_runner = BeamRunGoPipelineOperator(
    task_id="start_go_pipeline_direct_runner",
    go_file=GCS_GO,
    pipeline_options={"output": GCS_OUTPUT},
)

使用 DataflowRunner 的 Go 管道

tests/system/apache/beam/example_go.py[源代码]

start_go_pipeline_dataflow_runner = BeamRunGoPipelineOperator(
    task_id="start_go_pipeline_dataflow_runner",
    runner="DataflowRunner",
    go_file=GCS_GO,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
        "WorkerHarnessContainerImage": "apache/beam_go_sdk:latest",
    },
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}", project_id=GCP_PROJECT_ID, location="us-central1"
    ),
)

tests/system/apache/beam/example_go_dataflow.py[源代码]

start_go_job_dataflow_runner_async = BeamRunGoPipelineOperator(
    task_id="start_go_job_dataflow_runner_async",
    runner="DataflowRunner",
    go_file=GCS_GO_DATAFLOW_ASYNC,
    pipeline_options={
        "tempLocation": GCS_TMP,
        "stagingLocation": GCS_STAGING,
        "output": GCS_OUTPUT,
        "WorkerHarnessContainerImage": "apache/beam_go_sdk:latest",
    },
    dataflow_config=DataflowConfiguration(
        job_name="{{task.task_id}}",
        project_id=GCP_PROJECT_ID,
        location="us-central1",
        wait_until_finished=False,
    ),
)

wait_for_go_job_dataflow_runner_async_done = DataflowJobStatusSensor(
    task_id="wait-for-go-job-async-done",
    job_id="{{task_instance.xcom_pull('start_go_job_dataflow_runner_async')['dataflow_job_id']}}",
    expected_statuses={DataflowJobStatus.JOB_STATE_DONE},
    project_id=GCP_PROJECT_ID,
    location="us-central1",
)

start_go_job_dataflow_runner_async >> wait_for_go_job_dataflow_runner_async_done

此条目是否有帮助?