配方

用户有时会分享使用 Docker 镜像的有趣方法。我们鼓励用户通过提交拉取请求将这些配方贡献给文档,以防它们对社区的其他成员有用。以下各节介绍了这些知识。

Google Cloud SDK 安装

某些操作符,例如 GKEStartPodOperator, DataflowStartSqlJobOperator, 需要安装 Google Cloud SDK (包括 gcloud)。您也可以使用 BashOperator 运行这些命令。

创建一个新的 Dockerfile,如下所示。

docs/docker-stack/docker-images-recipes/gcloud.Dockerfile

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    https://apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARG BASE_AIRFLOW_IMAGE
FROM ${BASE_AIRFLOW_IMAGE}

SHELL ["/bin/bash", "-o", "pipefail", "-e", "-u", "-x", "-c"]

USER 0

ARG CLOUD_SDK_VERSION=322.0.0
ENV GCLOUD_HOME=/opt/google-cloud-sdk

ENV PATH="${GCLOUD_HOME}/bin/:${PATH}"

RUN DOWNLOAD_URL="https://dl.google.com/dl/cloudsdk/channels/rapid/downloads/google-cloud-sdk-${CLOUD_SDK_VERSION}-linux-x86_64.tar.gz" \
    && TMP_DIR="$(mktemp -d)" \
    && curl -fL "${DOWNLOAD_URL}" --output "${TMP_DIR}/google-cloud-sdk.tar.gz" \
    && mkdir -p "${GCLOUD_HOME}" \
    && tar xzf "${TMP_DIR}/google-cloud-sdk.tar.gz" -C "${GCLOUD_HOME}" --strip-components=1 \
    && "${GCLOUD_HOME}/install.sh" \
       --bash-completion=false \
       --path-update=false \
       --usage-reporting=false \
       --additional-components alpha beta kubectl \
       --quiet \
    && rm -rf "${TMP_DIR}" \
    && rm -rf "${GCLOUD_HOME}/.install/.backup/" \
    && gcloud --version

USER ${AIRFLOW_UID}

然后构建一个新的镜像。

docker build . \
  --pull \
  --build-arg BASE_AIRFLOW_IMAGE="apache/airflow:2.0.2" \
  --tag my-airflow-image:0.0.1

Apache Hadoop Stack 安装

Airflow 通常用于在 Hadoop 集群上运行任务。它需要 Java 运行时环境 (JRE) 才能运行。以下是使用 Hadoop 世界中常用工具的步骤

创建一个新的 Dockerfile,如下所示。

docs/docker-stack/docker-images-recipes/hadoop.Dockerfile

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    https://apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARG BASE_AIRFLOW_IMAGE
FROM ${BASE_AIRFLOW_IMAGE}

SHELL ["/bin/bash", "-o", "pipefail", "-e", "-u", "-x", "-c"]

USER 0

# Install Java
RUN mkdir -pv /usr/share/man/man1 \
    && mkdir -pv /usr/share/man/man7 \
    && curl -fsSL https://adoptopenjdk.jfrog.io/adoptopenjdk/api/gpg/key/public | apt-key add - \
    && echo "deb https://adoptopenjdk.jfrog.io/adoptopenjdk/deb/ $(lsb_release -cs) main" > \
        /etc/apt/sources.list.d/adoptopenjdk.list \
    && apt-get update \
    && apt-get install --no-install-recommends -y \
      adoptopenjdk-8-hotspot-jre \
    && apt-get autoremove -yqq --purge \
    && apt-get clean \
    && rm -rf /var/lib/apt/lists/*
ENV JAVA_HOME=/usr/lib/jvm/adoptopenjdk-8-hotspot-jre-amd64

RUN mkdir -p /opt/spark/jars

# Install Apache Hadoop
ARG HADOOP_VERSION=2.10.1
ENV HADOOP_HOME=/opt/hadoop
ENV HADOOP_CONF_DIR=/etc/hadoop
ENV MULTIHOMED_NETWORK=1
ENV USER=root

RUN HADOOP_URL="https://archive.apache.org/dist/hadoop/common/hadoop-$HADOOP_VERSION/hadoop-$HADOOP_VERSION.tar.gz" \
    && curl 'https://dist.apache.org/repos/dist/release/hadoop/common/KEYS' | gpg --import - \
    && curl -fSL "$HADOOP_URL" -o /tmp/hadoop.tar.gz \
    && curl -fSL "$HADOOP_URL.asc" -o /tmp/hadoop.tar.gz.asc \
    && gpg --verify /tmp/hadoop.tar.gz.asc \
    && mkdir -p "${HADOOP_HOME}" \
    && tar -xvf /tmp/hadoop.tar.gz -C "${HADOOP_HOME}" --strip-components=1 \
    && rm /tmp/hadoop.tar.gz /tmp/hadoop.tar.gz.asc \
    && ln -s "${HADOOP_HOME}/etc/hadoop" /etc/hadoop \
    && mkdir "${HADOOP_HOME}/logs" \
    && mkdir /hadoop-data

ENV PATH="$HADOOP_HOME/bin/:$PATH"

# Install Apache Hive
ARG HIVE_VERSION=2.3.7
ENV HIVE_HOME=/opt/hive
ENV HIVE_CONF_DIR=/etc/hive

RUN HIVE_URL="https://archive.apache.org/dist/hive/hive-${HIVE_VERSION}/apache-hive-${HIVE_VERSION}-bin.tar.gz" \
    && curl -fSL 'https://downloads.apache.org/hive/KEYS' | gpg --import - \
    && curl -fSL "$HIVE_URL" -o /tmp/hive.tar.gz \
    && curl -fSL "$HIVE_URL.asc" -o /tmp/hive.tar.gz.asc \
    && gpg --verify /tmp/hive.tar.gz.asc \
    && mkdir -p "${HIVE_HOME}" \
    && tar -xf /tmp/hive.tar.gz -C "${HIVE_HOME}" --strip-components=1 \
    && rm /tmp/hive.tar.gz /tmp/hive.tar.gz.asc \
    && ln -s "${HIVE_HOME}/etc/hive" "${HIVE_CONF_DIR}" \
    && mkdir "${HIVE_HOME}/logs"

ENV PATH="$HIVE_HOME/bin/:$PATH"

# Install GCS connector for Apache Hadoop
# See: https://cloud.google.com/dataproc/docs/concepts/connectors/cloud-storage
ARG GCS_VARIANT="hadoop2"
ARG GCS_VERSION="2.1.5"

RUN GCS_JAR_PATH="/opt/spark/jars/gcs-connector-${GCS_VARIANT}-${GCS_VERSION}.jar" \
    && GCS_JAR_URL="https://storage.googleapis.com/hadoop-lib/gcs/gcs-connector-${GCS_VARIANT}-${GCS_VERSION}.jar" \
    && curl "${GCS_JAR_URL}" -o "${GCS_JAR_PATH}"

ENV HADOOP_CLASSPATH="/opt/spark/jars/gcs-connector-${GCS_VARIANT}-${GCS_VERSION}.jar:$HADOOP_CLASSPATH"

USER ${AIRFLOW_UID}

然后构建一个新的镜像。

docker build . \
  --pull \
  --build-arg BASE_AIRFLOW_IMAGE="apache/airflow:2.0.2" \
  --tag my-airflow-image:0.0.1

Apache Beam Go Stack 安装

为了能够使用 BeamRunGoPipelineOperator 运行 Beam Go Pipeline,您的容器中需要 Go。使用 apache-airflow-providers-google>=6.5.0apache-airflow-providers-apache-beam>=3.2.0 安装 airflow

创建一个新的 Dockerfile,如下所示。

docs/docker-stack/docker-images-recipes/go-beam.Dockerfile

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    https://apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
ARG BASE_AIRFLOW_IMAGE
FROM ${BASE_AIRFLOW_IMAGE}

SHELL ["/bin/bash", "-o", "pipefail", "-e", "-u", "-x", "-c"]

USER 0

ARG GO_VERSION=1.16.4
ENV GO_INSTALL_DIR=/usr/local/go

# Install Go
RUN if [[ "$(uname -a)" = *"x86_64"* ]] ; then export ARCH=amd64 ; else export ARCH=arm64 ; fi \
    && DOWNLOAD_URL="https://dl.google.com/go/go${GO_VERSION}.linux-${ARCH}.tar.gz" \
    && TMP_DIR="$(mktemp -d)" \
    && curl -fL "${DOWNLOAD_URL}" --output "${TMP_DIR}/go.linux-${ARCH}.tar.gz" \
    && mkdir -p "${GO_INSTALL_DIR}" \
    && tar xzf "${TMP_DIR}/go.linux-${ARCH}.tar.gz" -C "${GO_INSTALL_DIR}" --strip-components=1 \
    && rm -rf "${TMP_DIR}"

ENV GOROOT=/usr/local/go
ENV PATH="$GOROOT/bin:$PATH"

USER ${AIRFLOW_UID}

然后构建一个新的镜像。

docker build . \
  --pull \
  --build-arg BASE_AIRFLOW_IMAGE="apache/airflow:2.2.5" \
  --tag my-airflow-image:0.0.1

此条目是否有帮助?